National climate policies and the European Emissions Trading System

Frederik Silbye, Secretariat of the Danish Council on Climate Change *Peter Birch Sørensen*, University of Copenhagen

Presentation at SITRA seminar in Helsinki, February 20, 2019

UNIVERSITY OF COPENHAGEN

Issues

- What are the prospects for the European carbon market after the 2018 reform of the ETS?
- Are national policies aimed at reducing emissions from the ETS sector ineffective?
- How can the future performance of the ETS be improved?

Main messages

- The surplus of ETS emission allowances is likely to persist for several decades even after the 2018 reform
- The new Market Stability Reserve fundamentally changes the ETS: National climate policies that reduce the demand for emission allowances may now reduce emissions permanently
- In the next couple of decades, a national policy that promotes renewable energy via subsidies or carbon taxes is more cost-effective than annulment of emission allowances
- The next ETS reform should introduce a floor and a ceiling for the allowance price

Background to the recent ETS reform

Rules of the ETS

- For every emitted ton of CO₂, an installation within the ETS must surrender an allowance
- Surrendered allowances are cancelled
- New allowances are issued each year at a declining rate
- Some new allowances are auctioned, others are allocated cost-free
- Allowances are tradable and can be banked for later use

Problems: The huge allowance surplus...

...and the unstable allowance price (Euros per ton of CO₂, monthly averages)

The controversy on the ETS: The defenders

Defenders of the ETS argue that:

- The system works: Emissions are below the cap
- The allowance surplus reflects efficient smoothing of abatement costs over time
- National subsidies to renewable energy are ineffective and distortive

The controversy on the ETS: The critics

Critics of the ETS argue that:

- The system has been flooded with questionable credits from outside Europe
- The allowance price has been too low and volatile to support sufficient investments in renewable energy
- National subsidies to renewables can reduce EU-wide emissions from the ETS sector

A sticking point: The waterbed effect

Unilateral Danish support to renewable energy Demand for allowances declines The allowance price decreases Emissions increase somewhere else – now or later Total European emissions are unaffected

Economists have emphasized the waterbed effect, but the recent ETS reform has punctured the waterbed

The recent ETS reform

Reform: The Market Stability Reserve (MSR)

300 2019-2023 250Cap from 2023: The number of allowances 200 cannot exceed the auctioned amount from the 150 previous year. Excess allowances are cancelled. 100 50 Allowance surplus (Mt) 0 600 800 400 200 1000 1200 -50 -100 -150

Net uptake into MSR (Mt)

Evaluating the reform: A simple model of the ETS

- A 1 euro rise in the allowance price reduces annual CO₂ emissions by 2.2 million tons (Sandbag)
- For a given allowance price, the demand for emission allowances falls by z percent per year
- Agents are forward-looking
- No one will hold a surplus of allowances unless they expect an increase in the allowance price (*r* = required expected price increase)
- The supply of allowances follows the rules prevailing after the recent ETS reform in all future years

Calibrating the model

 Model parameters (including z) are initially chosen so that the model reproduces the observed allowance price and emissions in 2017

• The increase in the allowance price from 2017 to 2018 is seen as an effect of the ETS reform and may be explained by a fall in *r* from 10% to 7.44% (lower risk premium)

Prospects for the ETS after the 2018 reform

Model forecast

Effects of national climate policies

Alternative national climate policies

- Subsidies to renewable energy and carbon taxes on emissions from the ETS sector reduce the *demand* for emission allowances
- Annulment of emission allowances (e.g. via a cut in auctioned allowances) reduces the *supply* of emission allowances

Effects of a national expansion of renewable energy

Accumulated reduction of emissions*

* as a percentage of the initial reduction of emissions

Effectiveness of national annulment of allowances

Accumulated reduction of emissions*

* as a percentage of the initial reduction of emissions

A blueprint for future ETS reform

Mix between price and quantity control of emissions is superior

- The new rules for the MSR are intransparent and may fail to generate sufficient stability of the allowance price
- If a choice between a carbon tax and a cap-and-trade scheme has to be made, the carbon tax is more efficient
- A pure carbon tax and a pure cap-and-trade scheme are dominated (in efficiency terms) by a mixed system that imposes a price floor and a price ceiling on the allowance price under cap-and-trade. This can be implemented via the auctioning procedure

Supplementary slides

Two types of annulment policies

- "Ordinary" annulment of emission allowances (e.g., the Swedish *utsläpsbromse*): Reduces the recorded allowance surplus used to calculate the cap on the MSR
- Annulment under the non-ETS Flexibility Mechanism (FM annulment): Does not reduce the recorded allowance surplus used to calculate the cap on the MSR

Coefficients of emissions reduction after the 2018 ETS reform

Policy	Demand reduction in year <i>t</i> (<i>CER</i> ^D _{t,H})			Annulment in year t $(CER^Q_{t,H})$			FM annulment in year <i>t</i> (CER ^Q _{t,H})		
horizon	<i>t</i> =	t =	<i>t</i> =	<i>t</i> =	t =	<i>t</i> =	<i>t</i> =	t =	<i>t</i> =
H = 2030	1.00	0.99	1.00	0.00	0.01	0.00	0.09	0.06	0.01
H = 2040	0.99	0.96	0.94	0.01	0.04	0.06	0.25	0.22	0.18
H = 2050	0.97	0.91	0.83	0.03	0.09	0.17	0.59	0.56	0.52
H = 2060	0.94	0.83	0.66	0.06	0.17	0.34	1.11	1.08	1.05

Note: The table considers policy experiments where 1 million allowances are annulled; alternatively renewable energy is subsidized to the extent needed to crowd out 1 Mt CO_2 , given the initial allowance price. The numbers show the accumulated fall in emissions occurring up until year *H*.

Comparison with other studies

- Perino and Willner (2016) estimated that the allowance surplus would have disappeared already in 2036 under the MSR rules agreed in 2015.
- Perino and Willner (2017) estimated that the new cap on the MSR introduced by the recent ETS reform will only be effective for a few years during the 2020s.
- However, these authors do not allow for a downward trend in the demand for emission allowances, thereby implicitly ignoring technical progress in renewable energy technologies.
- The Swedish National Institute of Economic Research (2018) presents results much closer to ours.